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This freedom could also be used to design an adaptive scheme for L,-Induced Norms and Frequency Gains
the choice of the exponential family. In this respect, it would also of Sampled-Data Sensitivity Operators
be useful to obtain for alt > 0 an estimate of the distance between
the optimal filter density; and the PF density?, in terms of the J. H. Braslavsky, R. H. Middleton, and J. S. Freudenberg

total residual norm historyfr;, 0 < s < ¢}.
Finally, we would like to define PF’s for discrete-time systems and
relate this problem with the work of Kulh§15] and [16]. Another ~ Abstract—This paper develops exact, computable formulas for the
motivation for this study will be to obtain efficient numerical schemelSquency gain and L-induced norm of the sensitivity operator in a
. L . . . Sampled-data control system. With sampled data, we refer to a system
for the solution of the stochastic differential equation satisfied by thgst combines both continuous-time and discrete-time signals, which is
PF parameters, i.e., (6) for a general fanmblyor (10) for the family studied in continuous time. The expressions are obtained using lifting
Se. techniques in the frequency domain and have application in performance
Each of these problems requires further investigation and will @@d stapility robustness analysis taking into account full intersample
. information.
addressed in subsequent works.
Index Terms—Frequency response, generalized sampled-data holds,
Ls-induced norms, robustness, sampled-data systems, sensitivity analysis.
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functionby H = Lh. Sinceh is supported on a finite interval, it
follows that H has no singularities at any finitein C; e.g., for the
ZOH, H(s) = (1 — e—*T)/s. Frequency responses for other types
of hold functions are derived in [23].

We denote by F'PH ), the discretized plantdefined as

A L
Fig. 1. Sampled-data control system. (FPH)s = 25, L FPH

where £7'FPH denotes the inverse Laplace transformIaPH .
e 1[18 connection with(F PH ),, we also introduce theliscrete input
%nsitivity functiorand thediscrete output complementary sensitivity
unction respectively, as

This concept extends the LTI notion of frequency respons
SD systems, in the sense that the maximum magnitude of
frequency gain of an SD operator is ifs-induced norm [17]-[20].
Yamamoto and Khargonekar [17] used lifting techniques to compute g, EY I+ Cd(FPH)d)]*l and 7Ty 2 (FPH),S.Cq. (1)
the frequency gain of a general SD system, while Hagiveral. ) ) -

[18] obtained similar results for the class of $Pmpactoperators N [23], the well-known nonpathological sampling condition for

using a frequency-domain framework developed in [21]. Relatioﬁéa_“ts discretized with a ZOH is generalized to the case of a GSHF.

between both approaches have been discussed in [19]. Although mbns result was also extended to the multivariable case in [24]. In

general, the procedures proposed in [17] do not seem to have an d§djicular, since for GSHF'dl may have zeros in the right half-
numerical implementation. On the other hand, the formulas providBine, it is necessary to require that none of these coincides with
in [18] are readily numerically implementable in a reliable fashiof?n unstable pole of the analog plant. Under the nonpathological
An iterative procedure was also suggested in this latter paper for f#TPling hypothesis, it is straightforward to extend the exponential
computation of the frequency gain of operators such as the sensitivifyd L2 input-output stability results of [25] and [26] to the case of
operator, which, as it turns out, f®t compact. QGSHF. We shall assume throughout that the system of FigL1 is

In this paper, we apply a frequency-domain lifting technique t§iPUt-output stable. .
obtain exact formulas for the computation of the frequency gain of | "€ @ssumptions off, H, and ' stated above suffice to guarantee
the SD sensitivity operator. ThBs-induced norm is then obtained [27] that (FPH). satisfies the well-known formula
from the frequency gain by performing a simple search of a maximum o 1 & ) o )
over a finite interval of frequencies. These expressions have a direct (FPH)a(e’") = T Z Hi(jw) Pe(jw) Fie(jw) )
application in performance and stability robustness analyses of SD k=—o0
systems. In particular, our results are formulated in terms of GSHF8here the notatiot’.(s) represent”(s + jkw,), with £ an entire
thus allowing the analysis of design techniques using D/A devicesmber. This notation will be frequently used.

other than the ZOH. We shall also use the functiofd, defined as
Notation and setup are defined in Section Il. In Section IlI, we NN , ot ot
review the frequency-domain lifting formalism that will be used to Gljw) = T P(jw)H(jw)Sa(e™ ) Cale”™ ). @)

state and prove our results, which appear in Section IV. Expressifsociated with and F, we introduce two discrete transfer matrices
for the numerical implementation of the results and an iIIustratieréquired to formulate our results

example are given in Section V.

oo

Ga(e™) 2 3 Gi(jw)Gi(jw) @
Il. PRELIMINARIES k=—o0
We consider the multivariable SD feedback system shown in Fig. and
whereP andF are the transfer functions of the plant and anti-aliasing LT A e . .
] . . Fu(e’ = Fr(jw)Fy (5
filter, C is the digital controller, and, d, and» are the command, ale”™) k_zx k(jw) Fe (jw) ©®)

disturbance, and noise inputs to the system. The system output is
andu and{ux } are the analog and discrete control inputs. The plaMhere F* denotes the conjugated transposefof Note that ify,
and controller are assumed to be proper, and the filter strictly progerandd are }/a|U€d inR™, thenG, and F,; arem x m discrete
and stablé,and they are all free of unstable hidden modes. transfer matrices.
We denote the sampling period Hy and the sampling frequency A characteristic feature of SD systems is evident from (2), namely

by w; 2 27 /T. TheNyquist frequency range defined as the interval the response of the discretized plant at a freqyemngN depends )
Qn 2 [—ws/2, ws/2]. If v is a continuous-time signal, we define theupon t_he_ response of the analog_ plant, prefllt_er., and hold function
N sr s gna, at an infinite number of frequencies. Indeed, it is well known that
the steady-state response of a stable SD system to a sinusoidal
input consists of a fundamental component and infinitely many
aliases shifted by multiples of the sampling frequency. Analogous

SEXpressions are obtained for the response to more general inputs,

oo

sampling operation with perio@ by Stv = {vr }3=_ .., where the
sequencduvy, } 2 _ ., represents the sampled signal, with= v(kT)
for any integerk. The z-transform operator is denoted Ly, i.e.,
Z{ux} 2 Y2 _urz"*, and the Laplace transform operator i

denoted byZ, Lu = U. _ such as noise and output disturbancé (cf., [21], [28], and [29]).
The hold devicell is a GSHF [16], defined by In particular, ifn is in L»(0, oo) and N is its Laplace transform,
w(t) = h(t — kT)uy, KT <t < (k+1)T, ke Z. then we have that the system response is given by

The function’, which characterizes the hold, is defined over the Y (jw) = —P(jw)H(jw)Sa(e’")Ca(e™ ") (FN)a(e’") (6)
interval[0, T'] and satisfies some mild technical conditions describgghere (FN)a(e’*T) = 1/T5 Fr(jw)Nk(jw). Similarly
in [23]. Associated with this hold we define ife2quency response fo the response to a disturbanéen L (0, o), we have that

1The assumption that the filter is strictly proper is standard and guarantees SN SN : 3 Jwl’
that the sampling operation is well defined (cf., [10] and [22]). The assumption Y(jw)=D(jw) ) yl_lk—)(]w)H(]e{)f‘l(e )
of stability is only made for simplicity of exposition and may be removed. < Cq(e? )Y (FD)a(e’). @
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Although an SD system is time-varying, its intrinsic periodic naturender the assumptions of closed-lodp-stability, S and 7 are
allows the use of model transformation techniques that yield timbeunded operators oh-.
invariant characterizations. The following section deals with one of The actions of the complementary sensitivity and sensitivity opera-
them. tors are respectively defined in frequency domain by the steady-state
responses (6) and (7). These equations are alternatively written as

Ill. FREQUENCY-DOMAIN LIFTING y=-Tn and y=Sd (20)

Several frameworks are available for the treatment of SD systems . e . . .
er applying the lifting of Section IlI. Her s the followin
embodying intersample information in the model. Among them, w pRIng Hing : er(w) i wing

. - . . iffinite-dimensional transfer matrix defined @b (cf., [19] and
have time-domain approaches, as the lifting technique of, e.g., [ 1]):
[7], [17], and frequency-domain approaches, as Bie-operators
introduced in [21]. We use a frequency-domain setting that we refer to . : :
as afrequency-domaitifting technique. The transformation involved .o GLF. GrFr 1
in this approach may be viewed as a generalization of the Fourier T=1 Gr1F. Gr 1Fo i - a1
transform in the FR-operators framework of [21]. The idea of lifting . .
in frequency domain is not new; it was developed in the signal
processing literature for linear discrete-time periodic systems; sgfere F is the transfer matrix of the prefilter ar@ is the function

for example [30]. introduced in (3). The corresponding matrix f8ris thus given by
Lety be a signal in the spade: (0, o). Then, itis a fact that its § = T — T, wherel is the identity operator of,.
Fourier transforn¥ (jw) belongs tal, (—oo, oo). Now, fromY (jw) OperatorsT and S are infinite-dimensional transfer matrix rep-

construct the sequence of functiofs. (jw)}x = {Y (j(w+kws))}r,  resentations of the SD complementary sensitivity and sensitivity
for w in the Nyquist rangé2y andF integer. Arrange this sequenceoperators7 and S. We are interested in the computation of their
in an infinite vector, which we denote by frequency gaing T (w)|| and||S(w)||. The corresponding.-induced
A o o . norms are then obtained, from (9), by searching for suprema over the
y(w) = [, YY (jw). }L)L(J’J)v Yil(]w)v ]t (8) finite interval Q.
where the superscript™ denotes transpose. We say that the infinite- An important fact about the complementary sensitivity operator
dimensional vectoy is thelifting of ¥, and we denote the lifting iS that it has finite rank (and, therefore, is compact).

operation ay = FY. As a functiony is defined at almost every Lemma IV.1: If the inputs to the system in Fig. 1 are valued in
in 2x and takes values ifi,. Moreover, thesé»-valued functions IR™, then7 has at most rank.
form a Hilbert space [31] under the norm and inner product Proof: Partition F'(jw) by rows, andG(jw) by columns, i.e.,
‘ " F =1/ f, - fn]" andG = [g1, g2, -+, gm]. Denote the
Iyl 2 </ Iy ()l dw) litings for F* and G by f = FF*, andg = F@. Hence,f =
o o2 [f1, £, ..., f], andg = [g1, g2, ---, &m], Where each column
- f,=Ff"infandg; = Fg: in g lives in L2(Qn; f2) becauseF
(v.x) = /)V@’(”)”X(“»fz dw. andG are both stable and strictly proper. Then, the actioMofan

be alternatively written as
We denote this space by.:({ly;f2). Since the elements of

L2(Q2n; (o) are essentially rearrangements of thosd.ef—oc, >0), Tn = ngn’ £:)e, (12)
both spaces are in fact isomorphic with preservation of norm [19]. i=1
A key point of the lifting is that in the new space, operators Qfyhere,(n, £;),, is a scalar-valued function defined a.e.fr. From

the SD system are representednadiltiplication operatorsdescribed (12), T is the sum ofm rank-one operators 0B (2 (> ): it thus
by infinite-dimensional “transfer matrices.” In other wordsMf is a has at most ranks. and so doeq . ) -

bounded operator if, andFMF " is the corresponﬂng operator  gince 7 is compact, the numerical computation of the norm of
in Ly(€2x; £2), then its action can be described &M~ 'y)(w) = 7 may pe approximated by truncatin between harmonics-n
M(w)y(w). An important consequence of these facts is that the,y ;" say and evaluating the maximum singular value of the
Ly-induced norm of the operator can then be computed as [6], [19},, | 1) x (25 + 1) matrix so obtained [21]. The convergence of the
M| = sup [[M(w)| 9 apprommanon could be slow, t_hough, since in genergliw) anql
wEQN F(jw) decay adl /w?, for some integep depending on the relative

where the supremum is understood as the essential suprenfgn, in degrees of the transfer matrices involved.

and |M(w)|| is the f--induced operator norm A¥I(ww). The scalar- In fact, becausé_r is finite-rank, more efficient ways of compL_Jting
valued function||M||: Qx — IRY is the so-calledrequency gain IT(w0)|| are possible. In [18], the authors show tHAF(w)]| is

of the SD operatotM [17], [18]. Notice the similarity of (9) to g?ven as the maximum eigenvalt)gmx[-] of an aSSOCiate,d finite-
the expression of thé.-induced norm of an LTI operator, i.e. thedimensional discrete transfer matrix evaluated on the unit circle. We

H..-norm of a transfer matrix. guote this result for convenience, and we provide an alternative proof
’ that uses geometric arguments.

Theorem V.2 [;>-Induced Norm off): If the SD system of
Fig. 1 is Ly-input—output stable, then
We concentrate on the sensitivity and complementary sensitivity

IV. L2-INDUCED NORMS OF SENSITIVITY OPERATORS

operators in the SD system of Fig. 1. These operators are defined as 17l = feuy})\, Tl (13)
the mappings relating output disturbantand noisen to the output
. where
y and are, respectively, denoted by , . .
o _ Jw Jw
S Ly — L T L, — L TP = Ao [Gale™T) Fae? )] (14)

. and
Sd — oy Tn +— y. and G, and F,; are as defined in (4) and (5).
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Proof: From (9), we have tha{7|| = sup,cq, [IT(w)|. Fix where o, ¢ denotes the subspace spanned by Hotind g, and
w in Q. SinceT is a finite-rank operator irdz, from (12) we can go(lR ) its orthogonal complement. Sin&eis block diagonal in these
write as a dyadic producl = gf*. We can then decompoge into  spaces, we have that
fa = pr @ pF, wherepr is the subspace d@b spanned by the range

of f and pF its orthogonal complement. Hence,ifis a vector in [|Sv]le, [|Sv]le,
oF thenTv = 0, and we can write IS[l = maxq  sup Ve o 0
Pk ' vEP(FG) Viles ’UGP#F,G) Vileg
ITvi - T
Tv||e
Tl =s = S
1l 322 [|v]ley = max<{ sup I VHIZ, 15. a7)
v#£0 'UEP(F1G> ||V||[2
) ||TV||52 . e
vf;OF ¥lle. Now, any vectorv in o ) can be finitely parameterized as
Since vectors of, in pr can be finitely parameterized &s= fa, v=If gl (18)
wherea belongs toC™, with m the number of inputs of", we then ) A A
have that with v in C*™. Denoteh = [f, g], andM = h*h. Notice that}M
is a finite-dimensional, positive semidefinite Hermitian matrix. Using
N a*f fg*gf fo the notation introduced in (4) and (5), and noticing that the discrete
I'TII™ = Sup o fo complementary sensitivity in (1) may be expressedas= f*g, we
faz20 can write M as
= Amax [(f*f)m(g*g)(f*f)w]- (15) [Fa Ty
| | M = _Tf Gd:|'
Note that(g*g)(w) = Gq(e’*T) and (£*f)(w) = Fa(e’“") are the
m x m discrete transfer matrices defined in (4) and (5). In particuldftroducing the matrixV’
f*f is nonsingular becausE is full column rank. _
Finally, since eigenvalues are invariant under similarity transfor- N2 G _I}

mations, (14) follows from (15), completing the proof. [ I-f 0

The case ofS has to be considered more carefully, since this
is a noncompactoperator, and as such it may not be in principld thfan follows thath”S"Sh = h*(I — fg")(I - gf")h = (I +
approximable by sequences of finite-rank operators, meaning that 6" )} and hence, we obtain from (18) that
norms of progressive truncations 8fmay not necessarily converge

2 AT~ ~F AT N M~
to the norm of the operator. % = sp 1M +2 MN My
Frequency gains of possibly noncompact SD operators have been  vCo(rc) IvIZ,  ecom My
discussed in [17], but, as pointed out in [18], the proposed procedure . ‘ ‘
seems in general hard to implement numerically. In [18], a numer- =1+ Amax [MI/ZNMI/Z} (19)
ically reliable method is suggested for the case of operatorsSike =1+ Amax [ MN]. (20)

i.e., the sum of a compact and a constant operator. Yet, to compute
the frequency gair|S||, this last method still requires giteration Since in (20) the produch/ N is
at each frequencyw € Qn.

The following theorem gives an exact, computable formula for the
frequency-gain and..-induced norm of the SD sensitivity operator
S. Our result relies on the fact th& verifies the complementarity
relationS = Z — 7, and sinceT is of finite rank, it turns out that from (17) and (20) we see that it only remains to show that
the computation of the frequency gain 8falso reduces to a finite- ),,..[M N] is nonnegative to complete the proof. But this follows
dimensional eigenvalue problem. As for Theorem IV.2, these resuliasily from the fact thafi/ > 0. Indeed, ifAZ > 0 then
admit a simple and reliable numerical implementation.

Theorem IV.3 L2-Induced Norm of5): If the SD system of s |:Fd T, }1/2 {]}

N = |:Fde—Td —Fd:|

TGy - Gg —T;

Fig. 1 is Lo-input—output stable, then T; Ga 0
ISl = sup [|S(w)]| (16) gives &*MY?*NMY?s = G4 > 0, and thusAmax in (19) is
wely nonnegative. Otherwis® is necessarily singular, and thus zero must
be in the spectrum af/'/2 N 31'/2, which shows thad .. [M N] >
where 0. The proof is now complete. ]
The closed-form expressions given by Theorems V.2 and (16)
IS = 14 s Ff{ﬂ’:f;)Gd(Eff;J*Td(ﬂj_'fz) *Fitk"_fi) can be used for performance and stability robustness analysis of SD
Tyl )G (el ) =Gg(39h) =T 7(e77) systems [10], [22], [32].

In the particular case of single-input—single-output (SISO) systems,
Ga, F, are the functions given by (4) and (5), aifid is the discrete these formulas simplify and show some interesting connections. In
complementary sensitivity function defined in (1). this case, the operatdf is then of rank one, and so the frequency
Proof: The same idea for the proof of Theorem IV.2 works herayains are given by the magnitude of the frequency response of scalar
Again, for a fixedw in Qx, decomposé; into (> = p(p, G)ajagr)ﬁﬂ @), discrete transfer functions.
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Corollary IV.4: If the SD system of Fig. 1 is SISO, then frequency gains of the SD sensitivity operators. The induced norms
|| = @[Ty 21) can then be computed by a straightforward search of maxima over
- Tl the finite intervalQ2x. Similar formulas have been derived for the
and case of ZOH in [4, Th. 3].
ISl =1 <\/(<I>§ = D)|T4)? + (|Sa| +1)? A. Computation off;(e’“")
ConsiderF, = TZSr L™ (FF), whereF(s) 2 F(—s)", i.e., the
+ \/(<I>§ — D)|Tal? + (|Sq] — 1)2> (22) transpose off' at —s. SinceF is strictly proper, then the sampling

of the output of FF is well defined. If{a, b, ¢, 0} is a minimal
where S, and 7, are the discrete sensitivity and complementarygtate-space realization fdr, then, a minimal realization foF F is

sensitivity functions, evaluated at= ¢’*7, and given by
< > |F1,~(j;u)|2> < > |Pk(jw)Hk(jw)|2> qo fa o |0 C=Tc 0
B () = M e . “loo—el Pl o7l

[(FPH)a(eT )P

23 _—
(23) and it is straightforward to see that the functidh(e’~") is then

Proof: The proof of (21) follows immediately from Theo- computed asy(¢’“") = TC(e!*TT — AT)7' B.
rem V.2, Formula (22) may be checked by computing.. in (16)
and after some stralghtforyvard but tedious algebralg manlpulalopB. Computation of7,(e7*T)

The expressions given in Corollary 1V.4 show a direct connection o ] ]
to the discrete sensitivity functiory andT}. In fact, the magnitudes 1 he case ofsy is slightly more complicated than the previous one
of their frequency responses are correspondingly lower bounds on B can b‘i agproached in a similar fashion. From (4), we can write
frequency gains o and 7, as we see in the following corollary. G4 = 7CaSiEaS.Ca, where

Corollary IV.5: Under the assumptions of Corollary IV.4

IT () > |Tu(e” )] (24) By % S HiPPH;. 27)
and k=—o0
IS(@)]| > max{[Sa(e’* )], 1} (25) o
) ) Hence, to computé&'; we need to e\{aluatEd(e]“ ). This is done by
at all frequenciesu in (2. discretizing the cascade of the hditl, the systemP P, and the hold

Proof: First notice from (23) tha®. is greater than or equal 1o g gince 7 is proper by definition, so is the cascade, and therefore
one at any. in {1y, since by Cauchy-Schwarz the sampling operation is again well defined. If the pl&hhas a

oo

>

|(FPH)d(n’"*‘T)|2 minimal realization{a, b, ¢, d}, then a minimal realization foP P
oo 2 is given by
1 . . .
=7 2 FBl@)Pw)Hi(jw)
Pt A=l 0 B = b
oo ) 1 oo ) - (‘,t C —at ’ - Ctd
< <AZ | Fi(jw)] ) <ﬁ kz |Pe(jw) Hi(jw)l ) C=[d'c —b], D=][dd].
Hence, (24) follows immediately. For (25), we have from (22) thatSuppose that the hold is as defined in Section Il. Then, following
[1Sa] — 1| + 1S4l +1 23], its pulse response can be described as
Isll > - (26)
since®, > 1. Therefore, from (26), ifS4| > 1 then||S|| > |S4], h(t) = Kel =07, if ¢t €[0,7) 28)
and otherwisd|S|| > 1, which completes the proof. ] 0, otherwise

Not surprisingly, it then follows from Corollary I1V.5 that thk,-

induced norms of the discretized system also give lower bounfly matricesi, L, and M of appropriate dimensions. Using these
for the Ls-induced norms of the SD system. The gap in NOMYata it may be checked that the functifia(¢’“7) in (27) is given

then, _is_due to the intersample info_rmat_ion missing in the discre6§, Ed(e:jfr) = Ca(e’*TT — Ag)By + Dy, where Ay = A7,
des_crlptlon of the systgm. _NoFe that in this sense,,c, , ®4 may By = f01 ¢ATBK e M dr, and
be interpreted as a “fidelity indexjihdependent of the controller
that quantifies how close we can expect to be the discrete and SD 7
performances. Cy :/ M T Ce? dr
9]
T T
V. NUMERICAL IMPLEMENTATION D, :/ A/IteLtrI(tDI{eLr—’wdT+/ ML (T
The expressions for the frequency-gains anginduced norms 0 . 0
obtained in the last section can be readily numerically implemented -K“C’/ AT BT N do dr
by computingGs and F,; from (4) and (5). These computations can 0

be approached as “special discretizations” by considering relations
similar to (2). In this way, the argumentssofp ., . in (13) and (16) Matrices B4, C4, and Dy in the above expressions can be easily
are expressed by two rational transfer functions:ie= e’*”—the numerically evaluated using matrix exponential formulas suggested
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Fig. 2. System with plant input disturbance.

comparison, we also plotted the magnitude of the frequency responses
of the corresponding discrete sensitivity functiofs We see from

Fig. 3 that in the GSHF solutiolS|| has peaks that more than double
those in the ZOH solution. This indicates higher sensitivity to input
disturbances and poorer robustness properties to plant perturbations.

VI. CONCLUSIONS

This paper has considered the worst-case disturbance/noise per-
formance {:-induced norm) of an SD system with full intersample
information. Using a frequency-domain lifting technique, we have
derived exact expressions for the computation of the frequency-
gain and L»-induced norm of the SD sensitivity operator. The
formulas involve a finite-dimensional eigenvalue problem that is
readily numerically implemented.

These formulas have immediate application in the analysis of
stability robustness for LTV unstructured perturbations d#d,-
control synthesis problems. Particularly since our expressions allow
the use of GSHF's, they provide a reliable computational tool for the

GSHF ZOH
45 . 4.5 F—
4,
3.5
3,
2.5
2 : 2
/
1.5}
T IS (el Tl | 1 1.
os '\ / 05 ~~_ (IS ] from
% . 1 % . 1
o /oy /oy
Fig. 3. Sampled-data frequency gains. [1]
by [33] which yield [2]
ar ~[[-A BK].,.\J0 (3]
puete o[ ]} 4
L' K'C 0 “
Cy=[M' O]exp{|:0 4 :|T}|:I:| 5]
gt LT ) -I' K'DK 0
D;=[M"e 0] exp { |: 0 I :|T} |:M:| [6]
L' K'C 0 0
+[M" Olexp |0 A BK|T L,,TA [} 7]
0 0 -—-L
C. Example: Sensitivity of GSHF Control (8]

These formulas may be readily used to analyze sensitivity anf®]
robustness properties of SD systems. As an illustration, we compute
the frequency gain of a system taken from [16, Example 1]. In th'§o
example, the author considered the problem of controlling a harmonic
oscillator via GSHF in the feedback configuration of Fig. 2. A GSHF
defined by [11]

0 -1 —13.1682
o eef ) |

7.0898

and sampling period df = 1 renders the closed-loop system stablé¢13]
with a response that is deadbeat in two sampling periods at most.
As noted in [16], this system can also be asymptotically stabilizeig A
with a ZOH and a constant gajn but then the discrete closed-loop
eigenvalues cannot be arbitrarily assigned as is the case with the
GSHF. [15]

However, the GSHF solution is more sensitive and less robust than
the ZOH solution. Indeed, consider the SD opera&anapping input
disturbancel to u in Fig. 2. Fig. 3 shows the frequency gains®f [16]
for the GSHF solution (left) and the ZOH with= 0.75 (right). For

K=10

M = { [12]

) evaluation of performance of a general class of SD designs.
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